organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl hydroxy(4-methoxyphenyl)methylphosphonate

Hua Fang,^a* Mei-Juan Fang^b and Yu-Fen Zhao^c

^aThe Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, People's Republic of China, ^bDepartment of Pharmaceutical Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China, and ^cDepartment of Chemistry, Key Laboratory for Chemical Biology, Fujian Province College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: fangh6115@xmu.edu.cn

Received 31 August 2007; accepted 4 September 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.064; wR factor = 0.159; data-to-parameter ratio = 17.7.

The title compound, $C_{12}H_{19}O_5P$, was obtained by the reaction of 4-methoxybenzaldehyde and diethyl phosphonate. Intermolecular $O-H\cdots O$ hydrogen bonds between the phosphoryl O atom and the hydroxy group result in the formation of an infinite chain connecting the molecules along the *b* axis.

Related literature

For related literature, see: Babak & Rahman (2001); Chen et al. (1995); Martine et al. (1995); Smaardijk et al. (1985); Stowasser et al. (1992).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{12}H_{19}O_5P} \\ M_r = 274.24 \\ {\rm Monoclinic,} \ P2_1/n \\ a = 10.454 \ (4) \ {\rm \AA} \\ b = 7.745 \ (3) \ {\rm \AA} \\ c = 18.021 \ (7) \ {\rm \AA} \\ \beta = 105.228 \ (7)^\circ \end{array}$

 $V = 1407.8 (9) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 273 (2) K $0.30 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker APEX area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.941, T_{\max} = 0.964$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	163 parameters
$vR(F^2) = 0.159$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
2891 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

7612 measured reflections

 $R_{\rm int} = 0.068$

2891 independent reflections

1818 reflections with $I > 2\sigma(I)$

 $D = H \cdots A$

Table 1 Hvdrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	H H···A	$D \cdot \cdot \cdot A$

	2		2	2 11 11
$O1-H1B\cdots O2^i$	0.82	1.87	2.687 (3)	173
	1 1	1		

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Key Foundation of Science and Technology Project of China (2006, DFA43030) and the National Natural Science Foundation of China (No. 20572061)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2226).

References

- Babak, K. & Rahman, N. (2001). Synth. Commun. 31, 2245–2250.
- Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, R. Y., Liu, L. Z. & Zhang, Z. B. (1995). *Heteroat. Chem.* 6, 503–506. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Martine, D., Hammer, S. & Hanspeter, K. (1995). Synthesis, **10**, 1267–1272.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Smaardijk, A. A., Noorda, S., van Bolhuis, F. & Wynberg, H. (1985). Tetrahedron Lett. 26, 493-496.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stowasser, B., Budt, K. H., Li, J. Q., Peyman, A. & Ruppert, D. (1992). *Tetrahedron Lett.* 33, 6625–6628.

supplementary materials

Acta Cryst. (2007). E63, o4002 [doi:10.1107/S1600536807043280]

Diethyl hydroxy(4-methoxyphenyl)methylphosphonate

H. Fang, M.-J. Fang and Y.-F. Zhao

Comment

In recent years a-hydroxyphosphonic acids esters have attracted much attention due to their wide biological activity (Stowasser*et al.*, 1992) and pharmaceutical interest (Chen*et al.*, 1995). They are useful reagents for the synthesis of enol ethers and <math>a-ketophosphonates (Babak *et al.*, 2001). Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk *et al.*, 1985). Intermolecular O—H…O hydrogen bond between the phosphoryl O atom and the hydroxy group results in the formation of an infinite chain connecting the molecules along the *b* axis (Table 1 and Fig. 3).

Experimental

To a solution of 4-methoxybenzaldehyde (5 mmol, 0.68 g) and diethyl phosphonate (5 mmol, 0.69 g) in tetrahydrofuran (5 ml) at 0 \%C was added aqueous ammonia (25%, 1.6 ml). The mixture was left to stand at ambient temperature for 2 h, during which time a precipitate separated. The precipitate was filtered off and washed rapidly with cold diethyl ether (Martine *et al.*, 1995). Single crystals were obtained by crystallization of a dichloromethane/ petroleum ether (v/v = 1/4) solution (Fig. 1). CHN analysis, calculated for C~12~H~19Õ~5~P: C, 52.55%; H, 6.98%; Found: C, 52.41%; H, 6.96%.

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic), 0.96 (CH₃), 0.97 (CH₂) or 0.98 (CH), O—H = 0.82 \%A and $U_{iso}(H) = 1.2U_{eq}$ (aromatic C, CH and CH₂) or 1.5 U_{eq} (methyl C and O).

Figures

Fig. 2. Molecular view of I with the atom-numbering scheme. Displacement ellipsoids are drawn atthe 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 3. Packing diagram of title compound showing the O—H…O interactions as dashed lines. The H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2]

 $F_{000} = 584$

 $\theta = 2.6-25.1^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 273 (2) KBlock, colourless $0.30 \times 0.20 \times 0.18 \text{ mm}$

 $D_{\rm x} = 1.294 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 1884 reflections

diethyl hydroxy(4-methoxyphenyl)methylphosphonate

Crystal data
C ₁₂ H ₁₉ O ₅ P
$M_r = 274.24$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 10.454 (4) Å
<i>b</i> = 7.745 (3) Å
c = 18.021 (7) Å
$\beta = 105.228 \ (7)^{\circ}$
$V = 1407.8 (9) \text{ Å}^3$
Z = 4

Data collection

Bruker APEX area-detector diffractometer	2891 independent reflections
Radiation source: fine-focus sealed tube	1818 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.068$
T = 273(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
φ and ω scan	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -12 \rightarrow 13$
$T_{\min} = 0.941, \ T_{\max} = 0.964$	$k = -9 \rightarrow 9$
7612 measured reflections	$l = -18 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 + 0.210P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{max} < 0.001$
2891 reflections	$\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$
163 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.14301 (7)	0.22551 (10)	0.12858 (4)	0.0579 (3)
C1	0.1690 (2)	0.3440 (4)	0.21623 (17)	0.0585 (8)
H1A	0.1783	0.4665	0.2051	0.070*
01	0.29092 (16)	0.2847 (3)	0.26315 (12)	0.0686 (6)
H1B	0.3220	0.3574	0.2960	0.103*
C2	0.0569 (2)	0.3249 (3)	0.25236 (16)	0.0538 (7)
O2	0.12622 (17)	0.0406 (2)	0.13491 (10)	0.0610 (5)
O3	0.2581 (2)	0.2753 (3)	0.09399 (13)	0.0794 (7)
C3	0.0574 (3)	0.2032 (4)	0.30721 (17)	0.0631 (8)
H3A	0.1283	0.1268	0.3217	0.076*
O4	0.0233 (2)	0.3229 (3)	0.07794 (13)	0.0766 (6)
C4	-0.0443 (3)	0.1923 (4)	0.34103 (18)	0.0711 (9)
H4A	-0.0413	0.1103	0.3792	0.085*
O5	-0.2459 (2)	0.2769 (3)	0.35739 (14)	0.0913 (8)
C5	-0.1500 (3)	0.2997 (4)	0.31971 (18)	0.0643 (8)
C6	-0.1545 (3)	0.4176 (5)	0.2642 (2)	0.0738 (9)
H6A	-0.2276	0.4898	0.2483	0.089*
C7	-0.0514 (3)	0.4306 (4)	0.23163 (19)	0.0683 (8)
H7A	-0.0547	0.5139	0.1940	0.082*
C8	0.3671 (5)	0.1724 (7)	0.0963 (4)	0.154 (2)
H8A	0.4157	0.1605	0.1499	0.185*
H8B	0.3342	0.0585	0.0785	0.185*
С9	-0.0663 (4)	0.2564 (5)	0.0107 (2)	0.1039 (13)
H9A	-0.0628	0.1312	0.0115	0.125*
H9B	-0.0407	0.2960	-0.0344	0.125*
C10	0.4525 (5)	0.2167 (7)	0.0581 (3)	0.143 (2)
H10B	0.5230	0.1335	0.0672	0.215*
H10C	0.4883	0.3284	0.0750	0.215*
H10D	0.4089	0.2206	0.0042	0.215*
C11	-0.1979 (4)	0.3120 (7)	0.0065 (3)	0.142 (2)
H11A	-0.2576	0.2658	-0.0390	0.214*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11B	-0.2016	0.4359	0.0048	0.214*
H11C	-0.2233	0.2719	0.0510	0.214*
C12	-0.3571 (3)	0.3881 (6)	0.3378 (3)	0.1105 (14)
H12A	-0.4172	0.3592	0.3681	0.166*
H12B	-0.4012	0.3751	0.2842	0.166*
H12C	-0.3283	0.5055	0.3479	0.166*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0565 (5)	0.0514 (5)	0.0661 (5)	0.0027 (4)	0.0168 (4)	0.0044 (4)
C1	0.0453 (15)	0.0469 (17)	0.081 (2)	-0.0007 (13)	0.0119 (14)	-0.0014 (14)
O1	0.0438 (11)	0.0669 (14)	0.0886 (15)	0.0018 (9)	0.0057 (10)	-0.0180 (11)
C2	0.0452 (15)	0.0466 (17)	0.0645 (18)	0.0029 (12)	0.0056 (13)	-0.0098 (13)
O2	0.0687 (12)	0.0461 (12)	0.0671 (13)	-0.0026 (9)	0.0157 (10)	-0.0039 (9)
O3	0.0787 (14)	0.0681 (15)	0.1036 (18)	0.0080 (12)	0.0456 (13)	0.0170 (12)
C3	0.0542 (17)	0.067 (2)	0.0642 (19)	0.0183 (15)	0.0087 (15)	-0.0023 (15)
O4	0.0772 (14)	0.0683 (16)	0.0764 (15)	0.0111 (11)	0.0065 (12)	0.0024 (11)
C4	0.0676 (19)	0.078 (2)	0.070 (2)	0.0145 (17)	0.0220 (17)	0.0075 (16)
O5	0.0689 (14)	0.116 (2)	0.0976 (18)	0.0117 (14)	0.0382 (13)	-0.0108 (14)
C5	0.0498 (17)	0.077 (2)	0.066 (2)	0.0040 (16)	0.0162 (15)	-0.0154 (17)
C6	0.0543 (17)	0.075 (2)	0.090 (2)	0.0214 (16)	0.0157 (17)	-0.0023 (19)
C7	0.0574 (17)	0.057 (2)	0.090 (2)	0.0149 (15)	0.0186 (16)	0.0101 (16)
C8	0.111 (3)	0.140 (5)	0.249 (7)	0.039 (3)	0.114 (4)	0.073 (4)
C9	0.109 (3)	0.098 (3)	0.086 (3)	0.014 (2)	-0.009 (2)	-0.010 (2)
C10	0.126 (4)	0.155 (5)	0.172 (5)	0.025 (4)	0.082 (4)	0.017 (4)
C11	0.089 (3)	0.140 (5)	0.163 (5)	0.002 (3)	-0.030 (3)	0.025 (4)
C12	0.067 (2)	0.129 (4)	0.147 (4)	0.020 (2)	0.049 (2)	-0.025 (3)

Geometric parameters (Å, °)

P1—O2	1.451 (2)	C6—C7	1.359 (4)
P1—O4	1.539 (2)	С6—Н6А	0.9300
P1—O3	1.543 (2)	С7—Н7А	0.9300
P1—C1	1.785 (3)	C8—C10	1.308 (5)
C1—O1	1.408 (3)	C8—H8A	0.9700
C1—C2	1.490 (4)	C8—H8B	0.9700
C1—H1A	0.9800	C9—C11	1.425 (5)
O1—H1B	0.8200	С9—Н9А	0.9700
C2—C3	1.364 (4)	С9—Н9В	0.9700
C2—C7	1.367 (4)	C10—H10B	0.9600
O3—C8	1.382 (4)	C10—H10C	0.9600
C3—C4	1.360 (4)	C10—H10D	0.9600
С3—НЗА	0.9300	C11—H11A	0.9600
O4—C9	1.420 (4)	C11—H11B	0.9600
C4—C5	1.356 (4)	C11—H11C	0.9600
C4—H4A	0.9300	C12—H12A	0.9600
O5—C5	1.362 (3)	C12—H12B	0.9600
O5—C12	1.415 (4)	C12—H12C	0.9600

C5—C6	1.346 (5)		
O2—P1—O4	115.73 (12)	С6—С7—Н7А	119.0
O2—P1—O3	113.70 (12)	С2—С7—Н7А	119.0
O4—P1—O3	103.71 (13)	C10—C8—O3	120.3 (4)
O2—P1—C1	115.56 (13)	C10—C8—H8A	107.3
O4—P1—C1	100.60 (13)	O3—C8—H8A	107.3
O3—P1—C1	105.98 (13)	C10—C8—H8B	107.3
O1—C1—C2	113.4 (2)	O3—C8—H8B	107.3
O1—C1—P1	105.49 (18)	H8A—C8—H8B	106.9
C2-C1-P1	112.39 (18)	O4—C9—C11	110.3 (3)
O1—C1—H1A	108.5	О4—С9—Н9А	109.6
C2—C1—H1A	108.5	С11—С9—Н9А	109.6
P1—C1—H1A	108.5	O4—C9—H9B	109.6
C1—O1—H1B	109.5	С11—С9—Н9В	109.6
C3—C2—C7	117.2 (3)	Н9А—С9—Н9В	108.1
C3—C2—C1	122.1 (2)	C8—C10—H10B	109.5
C7—C2—C1	120.7 (3)	C8—C10—H10C	109.5
C8—O3—P1	124.6 (2)	H10B-C10-H10C	109.5
C4—C3—C2	120.8 (3)	C8—C10—H10D	109.5
С4—С3—НЗА	119.6	H10B-C10-H10D	109.5
С2—С3—НЗА	119.6	H10C-C10-H10D	109.5
C9—O4—P1	125.4 (2)	C9—C11—H11A	109.5
C5—C4—C3	120.6 (3)	C9—C11—H11B	109.5
C5—C4—H4A	119.7	H11A—C11—H11B	109.5
C3—C4—H4A	119.7	С9—С11—Н11С	109.5
C5—O5—C12	117.4 (3)	H11A—C11—H11C	109.5
C6—C5—C4	119.6 (3)	H11B—C11—H11C	109.5
C6—C5—O5	124.9 (3)	O5-C12-H12A	109.5
C4—C5—O5	115.5 (3)	O5—C12—H12B	109.5
C5—C6—C7	119.6 (3)	H12A—C12—H12B	109.5
С5—С6—Н6А	120.2	O5-C12-H12C	109.5
С7—С6—Н6А	120.2	H12A—C12—H12C	109.5
C6—C7—C2	122.1 (3)	H12B-C12-H12C	109.5
O2—P1—C1—O1	64.4 (2)	O2—P1—O4—C9	-33.9 (3)
O4—P1—C1—O1	-170.20 (17)	O3—P1—O4—C9	91.3 (3)
O3—P1—C1—O1	-62.5 (2)	C1—P1—O4—C9	-159.2 (3)
O2—P1—C1—C2	-59.6 (2)	C2—C3—C4—C5	1.5 (5)
O4—P1—C1—C2	65.8 (2)	C3—C4—C5—C6	0.4 (5)
O3—P1—C1—C2	173.50 (19)	C3—C4—C5—O5	179.9 (3)
O1—C1—C2—C3	-25.5 (4)	C12—O5—C5—C6	-1.5 (5)
P1—C1—C2—C3	94.0 (3)	C12—O5—C5—C4	179.0 (3)
O1—C1—C2—C7	154.2 (3)	C4—C5—C6—C7	-1.7 (5)
P1—C1—C2—C7	-86.3 (3)	O5—C5—C6—C7	178.8 (3)
O2—P1—O3—C8	-24.8 (4)	C5—C6—C7—C2	1.2 (5)
O4—P1—O3—C8	-151.3 (4)	C3—C2—C7—C6	0.6 (4)
C1—P1—O3—C8	103.2 (4)	C1—C2—C7—C6	-179.2 (3)
C7—C2—C3—C4	-1.9 (4)	P1	172.4 (4)
C1—C2—C3—C4	177.8 (3)	P1—O4—C9—C11	142.0 (3)
			· /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O1—H1B···O2 ⁱ	0.82	1.87	2.687 (3)	173
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$.				

